Total Quality Management RHIC Retreat 2006

Rob Michnoff

Topics

- TQM Definition
- Operation strategy and competitive priorities
- Six Sigma
- An example application of the methodology
- Recommendations to decrease downtime
- Continuous Improvement

TQM Definition

- Elements of Total Quality Management (TQM)
 - People Power
 - Customer satisfaction
 - Employee involvement, empowerment & teamwork
 - Process Power
 - Well defined methods understood and respected by everyone
 - Using data to justify decisions
 - Continuous improvement

Competitive Priorities

 Every business must select a few of the following 9 competitive priorities with which to focus all decisions.

Category	Competitive Priority
Cost	1. Low-Cost Operations
Quality	2. Top Quality
	3. Consistent Quality
Time	4. Delivery Speed
	5. On-Time Delivery
	6. Development Speed
Flexibility	7. Customization
	8. Variety
	9. Volume Flexibility

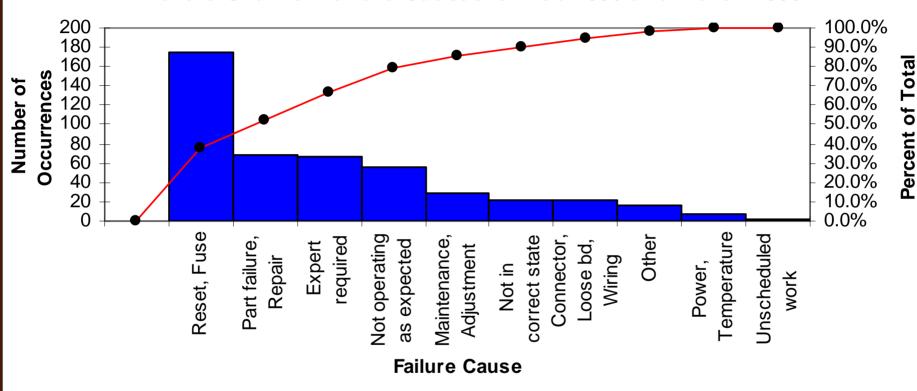
C-A Competitive Priorities Focus For Operation Strategy

Top Quality

- We must consistently and reliably produce high quality beam.
- Future goals are aggressive.

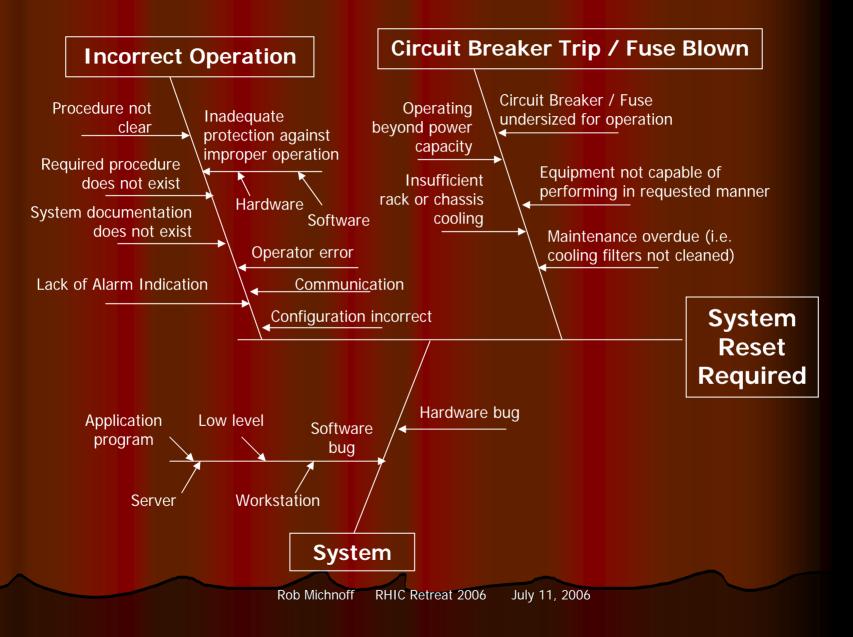
Flexibility/Variety

 The C-A complex is designed for a wide variety of particle species, intensities, and energies. This will continue to be our forte.


Development Speed

 Whether during shutdown or during operations, system development and modification speed is critical.

Six Sigma


- A TQM problem solving methodology The DMAIC process
 - Define
 - Measure
 - Analyze
 - Improve
 - Control

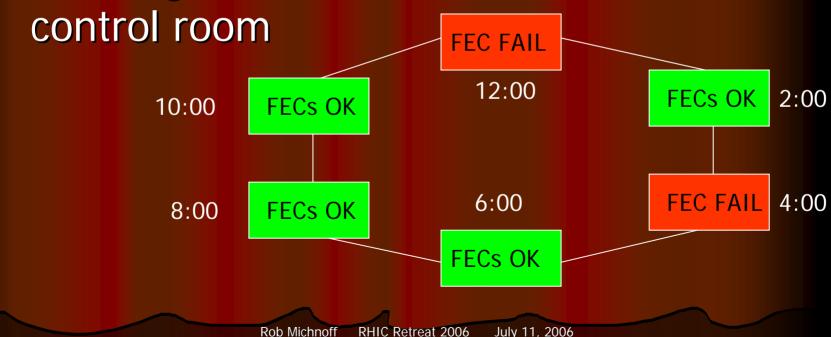
Pareto Chart of Failure Causes for Feb 2006 and March 2006

Description of Failure Cause	Feb-06	Mar-06	Total	Percent	
System reset, fuse replacement required	81	94	175	37.8%	
Part/Component failure, repair required	35	34	69	14.9%	
System expert required	41	25	66	14.3%	
System not operating as expected, unknown cause	32	24	56	12.1%	
Maintenance Issue, hardware adjustment required	15	14	29	6.3%	
System not in correct state/configuration	12	9	21	4.5%	
Connector problem lesses board, wrong wiring etc.	40	0	24	4 50/	
Connector problem, loose board, wrong wiring etc.	13	8	21	4.5%	
Other	11	6	17	3.7%	
Facility power, Temperature	3	5	8	1.7%	
Unscheduled new release or work performed	1	0	1	0.2%	
Rob Michnoff RHIC Retreat 2006 July 11, 2006					

Cause and Effect Diagram (fishbone)

Decrease Downtime Use Online Analytical Processing (OLAP)

- Analysis using existing tools is not easy
 - Operations journal
 - Peter's charts
 - Trouble reports
 - Elogs
- Online failure analysis tools are required to allow selected data for display
 - system, accelerator, trends, selected time period, etc.


Decrease Downtime Improve Documentation

- Organize system documentation for easy web access
- Develop common format
 - Introduction, block diagram, purpose of system, system dependencies, how to configure, how to operate, troubleshooting, detailed test procedure, quick test procedure, etc.

Decrease Downtime Enhance Alarm System

 Develop graphical representation of facility for system alarm notification

Use large screens visible from entire

People Power & Process Power Continuous Improvement

- Use the Poka-Yoke (mistake proofing) approach
- Ask everyone to recommend one or more process changes
- Increase standardization between groups
- Make sure everyone is enjoying their job
- Without passion, nothing is fun
- Involve more people in the exhilaration of machine operations

People Power & Process Power Think Like a Consultant

- Understand the customer's needs
- Have a clear understanding of the deliverables, including documentation
 - Final payment won't be issued until the project is 100% complete
 - We seem to have many projects that are never fully completed
 - Keep a list of outstanding issues

During Presentations

 Please consider how we can improve one or more of our processes

Summary

- Understand our competitive priorities
 - Top quality, flexibility/variety, development speed
- Use the Six Sigma DMAIC method

Continuously improve

Closing Quotes

- Quality is the result of People Power and Process Power
- Think how to improve every day
- Close enough isn't good enough
- The small stuff is the big stuff
- Quality should be measured by your worst day

Chowdhury, Subir. The Ice Cream Maker